Article ID Journal Published Year Pages File Type
6161842 Kidney International 2015 7 Pages PDF
Abstract
Insulin resistance refers to reduced sensitivity of organs to insulin-initiated biologic processes that result in metabolic defects. Insulin resistance is common in patients with end-stage renal disease but also occurs in patients with chronic kidney disease (CKD), even when the serum creatinine is minimally increased. Following insulin binding to its receptor, auto-phosphorylation of the insulin receptor is followed by kinase reactions that phosphorylate insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and Akt. In fact, low levels of Akt phosphorylation (p-Akt) identify the presence of the insulin resistance that leads to metabolic defects in insulin-initiated metabolism of glucose, lipids, and muscle proteins. Besides CKD, other complex conditions (e.g., inflammation, oxidative stress, metabolic acidosis, aging, and excess angiotensin II) reduce p-Akt resulting in insulin resistance. Insulin resistance in each of these conditions is due to the activation of different E3 ubiquitin ligases, which specifically conjugate ubiquitin to IRS-1 marking it for degradation in the ubiquitin-proteasome system (UPS). Consequently, IRS-1 degradation suppresses insulin-induced intracellular signaling, causing insulin resistance. Understanding mechanisms of insulin resistance could lead to therapeutic strategies that improve the metabolism of patients with CKD.
Related Topics
Health Sciences Medicine and Dentistry Nephrology
Authors
, , ,