Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6162378 | Kidney International | 2014 | 13 Pages |
Abstract
Although the protective effect of lipopolysaccharide (LPS) pretreatment on renal ischemia/reperfusion injury is known, a link to hypoxia-inducible factors (HIFs) has not been established. Here we show that LPS treatment led to HIF-2α accumulation in mouse kidneys and endothelial cells, a result of nuclear factor-κB activation. Inactivation of HIF-2α, rather than HIF-1α, completely negated LPS-mediated protection against renal ischemia/reperfusion injury. LPS-stimulated renoprotection was related to inducible/endothelial nitric oxide synthase (iNOS/eNOS) expression, increased production of nitric oxide, and enhanced postischemic microcirculatory recovery. All these effects were lost in HIF-2α knockout mice. Preischemic administration of a nitric oxide donor, rather than erythropoietin, restored the lost preconditioning effect of LPS in HIF-2α knockout mice. In vitro and in vivo studies demonstrated that HIF-2α in endothelial cells, rather than myeloid cells or hepatocytes, was responsible for the LPS-mediated effects. Thus, our results demonstrated that LPS preconditioning protected against renal ischemia/reperfusion injury by HIF-2α activation in endothelial cells that subsequently improved renal microvascular perfusion and reduced ischemic tubular damage.
Related Topics
Health Sciences
Medicine and Dentistry
Nephrology
Authors
Kang He, Xiaosong Chen, Conghui Han, Longmei Xu, Jianjun Zhang, Ming Zhang, Qiang Xia,