Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6163605 | Kidney International | 2014 | 12 Pages |
Abstract
Suppressor of cytokine signaling 3 (SOCS-3) is an important intracellular negative regulator of several signaling pathways. We found that SOCS-3 is highly expressed in renal proximal tubules during acute kidney injury. To test the impact of this, conditional proximal tubular knockout mice (SOCS-3sglt2Î/sglt2Î) were created. These mice had better kidney function than their wild-type counterparts in aristolochic acid nephropathy and after ischemia/reperfusion injury. Kidneys of these knockout mice showed significantly more proximal tubular cell proliferation during the repair phase. A direct effect of SOCS-3 on tubular cell cycling was demonstrated by in vitro experiments showing a JAK/STAT pathway-dependent antimitotic effect of SOCS-3. Furthermore, acute damaged kidneys of the knockout mice contained increased numbers of F4/80+ cells. Phenotypic analysis of these F4/80+ cells indicated a polarization from classically activated to alternatively activated macrophages. In vitro, SOCS-3-overexpressing renal epithelial cells directly induced classical activation in cocultured macrophages, supporting the observed in vivo phenomenon. Thus, upregulation of SOCS-3 in stressed proximal tubules plays an important role during acute kidney injury by inhibition of reparative proliferation and by modulation of the macrophage phenotype. Antagonizing SOCS-3 could have therapeutic potential for acute kidney injury.
Related Topics
Health Sciences
Medicine and Dentistry
Nephrology
Authors
Nathan Susnik, Inga Sörensen-Zender, Song Rong, Sibylle von Vietinghoff, Xia Lu, Isabelle Rubera, Michel Tauc, Christine S. Falk, Warren S. Alexander, Anette Melk, Herrmann Haller, Roland Schmitt,