Article ID Journal Published Year Pages File Type
616363 Tribology International 2007 11 Pages PDF
Abstract

The tribological behavior of bakelite resin–matrix composites reinforced with nanocrystalline Al 6061 T6 particles produced by machining (grain size 70–500 nm) has been studied using block-on-ring and pin-on-disk tests. The polymer–matrix composite reinforced with nanostructured Al 6061 particles aged for 10 h [Al 6061 (3) 10 h] shows a wear reduction of around 60% with respect to the conventional microstructured reinforcement. Also it shows the lowest wear rates when compared with the nanostructured reinforcements aged for 5 h or 1 h, respectively. Friction coefficients and wear rates increased with increasing sliding speed and normal load. Under 10 N and 0.10 m s−1, Al 6061 (3) 10 h showed an initial friction and contact temperature increase and a very severe wear with material transfer to the steel ball surface. Increasing the steel–composite contact temperature to 100 °C (1 N; 0.05 m s−1) produced a one order of magnitude decrease both in friction and wear. Wear mechanisms for the polymer matrix and the aluminum reinforcement are discussed on the basis of SEM and EDS observations.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,