Article ID Journal Published Year Pages File Type
616369 Tribology International 2007 9 Pages PDF
Abstract

This paper studies the behavior of a flexible rotor supported by a herringbone-grooved gas journal-bearing system. A hybrid method is employed to develop a time-dependent mathematical model of the bearing system. The finite difference method is employed with the successive over relaxation technique to solve the Reynolds equation. The system state trajectories, Poincaré maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor and the journal center in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behavior comprising periodic and quasi-periodic responses of the rotor and the journal center. The present numerical study illustrates the relationship between the dynamic behavior of this type of system and the rotor mass and bearing number. As such, the present results provide a deeper understanding of the non-linear dynamics of gas film rotor-bearing systems.

Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,