Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
616464 | Tribology International | 2006 | 12 Pages |
Abstract
It was found that the ball-cratering test can differentiate between the wear resistances of materials with similar properties. The wear resistance of WCIs in the presence of silica sand increased with increasing the hardness of the wear sample and decreasing the size of carbides in the microstructure. Smaller silica sand particles caused less wear damage than larger silica sand particles, even though the smaller particles were slightly sharper than the larger ones. When silica sand and quartz particles of the same size were used, the angular quartz particles caused much higher wear than the rounded silica sand particles. Surface morphologies of the wear craters on the WCI samples were examined in an SEM and then compared with the morphologies of the worn surfaces from slurry pumps. It was found that the silica sand particles generated surface morphologies similar to those found in the worn slurry pumps. In these surfaces the matrix was preferentially worn out and hard carbides were protruding. Wear surface morphologies produced by the angular quartz particles were different. They consisted of numerous superimposed indents and the microstructure phases were not distinguishable. This indicates that the type of abrasive particles used in ball-cratering testing significantly affects the test outcomes in terms of wear rates and wear surface morphology.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Colloid and Surface Chemistry
Authors
G.B. Stachowiak, G.W. Stachowiak, O. Celliers,