Article ID Journal Published Year Pages File Type
6164807 Kidney International 2013 10 Pages PDF
Abstract
Vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) are key mediators of adverse peritoneal membrane remodeling in peritoneal dialysis eventually leading to ultrafiltration failure. Both are pleiotropic growth factors with cell type-dependent regulation of expression and biological effects. Here we studied regulation of TGF-β1-induced VEGF expression in human peritoneal mesothelial cells in the absence or presence of proinflammatory stimuli, tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β). Quiescent human peritoneal mesothelial cells secreted only trace amounts of VEGF. Stimulation with TGF-β1 resulted in time- and dose-dependent increases in VEGF mRNA expression and protein release. TNF-α and IL-1β alone had minimal effects but acted in synergy with TGF-β1. Combined stimulation led to induction of transcription factor c-Fos and activation of the VEGF promoter region with high-affinity binding sites for c-Fos. Inhibition of c-Fos by small interfering RNA interference or by pharmacological blockade with SR-11302 decreased VEGF promoter activity and downregulated its expression and release. Exposure of human peritoneal mesothelial cells to dialysate effluent containing increased levels of TGF-β1, TNF-α, and IL-1β obtained during peritonitis resulted in a dose-dependent VEGF induction that was significantly attenuated by SR-11302. Thus, dialysate TGF-β1, IL-1β, and TNF-α act through c-Fos to synergistically upregulate VEGF production in peritoneal mesothelium and may represent an important regulatory link between inflammation and angiogenesis in the peritoneal membrane.
Related Topics
Health Sciences Medicine and Dentistry Nephrology
Authors
, , , , , , , ,