Article ID Journal Published Year Pages File Type
6165172 Seminars in Nephrology 2013 10 Pages PDF
Abstract
Complement proteins are generated both by the liver (systemic compartment) and by peripheral tissue-resident cells and migratory immune cells (local compartment). The immune cell-derived, alternative pathway complement components activate spontaneously, yielding local, but not systemic, production of C3a and C5a. These anaphylatoxins bind to their respective G-protein-coupled receptors, the C3a receptor and the C5a receptor, expressed on T cells and antigen-presenting cells, leading to their reciprocal activation and driving T-cell differentiation, expansion, and survival. Complement deficiency or blockade attenuates T-cell-mediated autoimmunity and delays allograft rejection in mice. Increasing complement activation, achieved by genetic removal of the complement regulatory protein decay accelerating factor, enhances murine T-cell immunity and accelerates allograft rejection. Signaling through the C3a receptor and the C5a receptor reduces suppressive activity of natural regulatory T cells and the generation and stability of induced regulatory T cells. The concepts, initially generated in mice, recently were confirmed in human immune cells, supporting the need for testing of complement targeting therapies in organ transplants patients.
Related Topics
Health Sciences Medicine and Dentistry Nephrology
Authors
, , , ,