Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
616519 | Tribology International | 2006 | 9 Pages |
High stress abrasive wear behaviour of aluminium alloy (ADC-12)–SiC particle reinforced composites has been studied as a function of applied load, reinforcement size and volume fraction, and has been compared with that of the matrix alloy. Two different size ranges (25–50 and 50–80 μm) of SiC particles have been used for synthesizing ADC-12–SiC composite. The volume fraction of SiC particles has been varied in the ranges from 5 to 15 wt%. It has been noted that the abrasive wear rate of the alloy reduced considerably due to addition of SiC particle and the wear rate of composite decreases linearly with increase in SiC content. It has also been noted that the wear resistance of composite varies inversely with square of the reinforcement size. The wear rate of the alloy and composite has been found to be a linear function of applied load but invariant to the abrasive size; at critical abrasive size, transition in wear behaviour is noted. This has been explained through analytically derived equations and wear–surface examination.