Article ID Journal Published Year Pages File Type
6165206 Urology 2016 6 Pages PDF
Abstract

ObjectiveTo measure radiation exposure of urologists during ureteroscopic (URS) lithotripsy, and hence estimating the number of procedures that can be performed safely considering the annually permissible radiation dose, and to identify influential variables.Materials and MethodsThe radiation exposure dose was measured at the neck, chest, arm, and hands of a single urologist who performed 49 URS lithotripsies. The number of annually performed URS lithotripsies was estimated based on the annual permissible occupational exposure radiation dose guidelines. The fluoroscopy screening time, tube voltage, and tube current were evaluated to determine their correlation with operative time, position, size, and Hounsfield unit (HU) values of the ureteral stones, and patients' body mass index (BMI).ResultsOur findings showed that 45 URS lithotripsies can be safely performed without a whole-body apron vs 1725 cases with one; considering the permissible dose for the hands, 448 cases without radiation protection were possible. Significant correlations were observed between operative time and fluoroscopy screening time (P < .001), ureteral calculi location and fluoroscopy screening time (P = .027), HU value and fluoroscopy screening time (P = .016), HU value and operative time (P = .041), and tube current and patients' BMI (P = .009).ConclusionConsidering radiation exposure risk, protective gear is necessary to ensure safety and efficacy of URS lithotripsy. Efforts to reduce radiation dose before and during surgery are required when ureteral calculi are in upper locations or have large HU, or the patient has a high BMI.

Related Topics
Health Sciences Medicine and Dentistry Nephrology
Authors
, , , , , , , , , ,