Article ID Journal Published Year Pages File Type
616685 Tribology International 2007 12 Pages PDF
Abstract

Cobalt-based alloys are often used for bearing applications, especially at elevated temperatures. One of the newly developed 700 series cobalt-based alloys, Stellite 712, has been demonstrated to possess high resistance to wear and corrosion in aggressive environments. Continuous efforts have been made to further improve this alloy for enhanced resistance to high-temperature wear involving oxidation. Recent studies showed that the improvement of the oxide scale on Co-base alloys by alloying with yttrium was an effective way to diminish wear of the alloys at elevated temperatures.In this work, sliding wear performances of yttrium-free and yttrium-containing Stellite 712 samples at elevated temperatures were evaluated. The mechanism responsible for changes in its wear performance was investigated by studying the effects of alloying yttrium on microstructure and mechanical properties of the bulk alloy and its oxide scale, employing various experimental methods including micro- and nano-mechanical probing, XRD, SEM-EDS, AFM and high-temperature pin-on-disc wear testing. The research demonstrated that alloying a small amount of yttrium (e.g. less than 1%Y) rendered the oxide scale on Stellite 712 stronger with higher adherence to the substrate, which was largely beneficial to the wear performance of the alloy at elevated temperatures. Mechanisms involved are discussed in this article.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,