Article ID Journal Published Year Pages File Type
616760 Tribology International 2006 9 Pages PDF
Abstract

This work models statistically elasto-plastic contact between two rough surfaces using the results of a previous finite element analysis of an elasto-plastic sphere in contact with a rigid flat. The individual asperity contact model used accounts for a varying geometrical hardness effect that has recently been documented in previous works (where geometrical hardness is defined as the uniform pressure found during fully plastic contact). The contact between real surfaces with known material and surface properties, such as the elastic modulus, yield strength, and roughness are modeled. The asperity is modeled as an elastic-perfectly plastic material. The model produces predictions for contact area, contact force, and surface separation. The results of this model are compared to other existing models of asperity contact. Agreement exists in some cases and in other cases it corrects flaws, especially at large deformations. The model developed by Chang, Etsion and Bogy is also shown to have serious flaws when compared to the others. This work also identifies significant limitations of the statistical models (including that of Greenwood and Williamson).

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,