Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
617042 | Wear | 2015 | 6 Pages |
Abstract
Gear life and operation are largely determined by the properties of the contacting surfaces, which inevitably change over the gear life. The initial topography transformation, a characteristic effect of running-in, is very important. This paper focuses on how the running-in of the surface topography can be characterized and what methodology can be used for this purpose. To characterize running-in, gears were run in an FZG back-to-back test rig and the changes in surface topography were measured in situ using a Form Talysurf Intra. This enables the same gear tooth surface to be measured with enough precision to follow its development through the different stages of running-in. Gear tooth surfaces as manufactured were measured on three occasions: in initial manufactured condition, after a standard running-in procedure, and after an efficiency test. Running-in was characterized both qualitatively by plotting roughness profiles and quantitatively by analyzing a selected set of roughness parameters. This paper demonstrates that: the asperity peaks were worn off in the initial running-in stage; roughness, waviness, and form can be separated using a carefully chosen polynomial fit and the Gaussian filter; surface topography can be examined initially, after running-in, and after operation in situ; and complete wear of the initial surface can be observed in specific circumstances.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Colloid and Surface Chemistry
Authors
Mario Sosa, Stefan Björklund, Ulf Sellgren, Ulf Olofsson,