Article ID Journal Published Year Pages File Type
618427 Wear 2010 10 Pages PDF
Abstract

Wear prediction on the components of a mechanical system without considering the system as a whole will, in most cases, lead to inaccurate predictions. This is because the wear is directly affected by the system dynamics which evolves simultaneously with the wear. In addition, the contact condition (regions of contact for the wearing bodies) also depends on the system dynamics and can only be determined in a multibody dynamics framework.In this work, a procedure to analyze planar multibody systems in which wear is present at one or more revolute joints is presented. The analysis involves modeling multibody systems with revolute joints that consist of clearance. Wear can then be incorporated into the system dynamic analysis by allowing the size and shape of the clearance to evolve as dictated by wear. An iterative wear prediction procedure based on Archard's wear model is used to compute the wear as a function of the evolving dynamics and tribological data. The procedure is then validated by comparing the wear prediction with wear on an experimental slider-crank mechanism.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,