Article ID Journal Published Year Pages File Type
618532 Wear 2009 10 Pages PDF
Abstract

Wear experiments in the range of 25–600 °C have been conducted on samples of D2 tool steel in different conditions involving unnitrided, nitrided and nitrided and coated with Balinit® A (TiN) and Balinit® Futura (TiAlN) deposited industrially at Balzers (Amherst, NY, USA), by means of PAPVD. The results indicate that coating the nitrided D2 tool steel substrate with these two films gives rise to an improvement of ∼97% (TiN) and 99% (TiAlN) in the wear behavior at the test temperature of 300 °C, in comparison with the uncoated substrate. However, at a temperature of 600 °C, besides oxidation of the coatings, the mechanical strength of the substrate decreases giving rise to fracture and delamination of the films. At this temperature the uncoated substrate exhibited the highest resistance to sliding wear, presumably due to the formation of a well bonded surface glazed layer which gives rise to a significant reduction in the friction coefficient. The indentation experiments that were conducted with the nitrided steel substrate and the coated systems indicates that the nitriding process applied to the D2 steel prior to PAPVD coating provides a satisfactory load support which contributes to the improvement of the coated systems capability to withstand indentation loads at room temperature. In this regard, the coated system with a TiAlN coating displayed a better behavior than that shown by the system with a TiN coating. An experimental procedure is proposed in order to predict the hardness profile of the nitrided tool steel, along the cross section of the material, just from hardness measurements taken on the surface of the sample, employing different indentation loads.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , ,