Article ID Journal Published Year Pages File Type
618534 Wear 2009 12 Pages PDF
Abstract

In metallic contacts, surface oxides, adhesion, and material transfer play a primary role in the initial stages of fretting wear degradation. Given this behavior, the focus of this study was to mitigate fretting wear within Ti6Al4V contacts at room temperature and 450 °C with the use of thermally sprayed nickel graphite composite coatings with 5–20% graphite. The results show that the embedded graphite particles reduced the friction of the nickel thermal sprayed coatings during both low and high temperature fretting wear experiments. Friction and wear mechanisms are discussed with correlations of contact chemistry, morphology, and mechanical performance. Wear on the mated Ti6Al4V surfaces was reduced by the formation of uniform transfer films that were identified as graphitic based at room temperature and NiO based at 450 °C.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,