Article ID Journal Published Year Pages File Type
619493 Wear 2007 7 Pages PDF
Abstract

Dry sliding wear of Al–4Cu–xTiB2 (x = 0, 2.5, 5, 7.5 and 10 wt.%) in situ composites have been studied in the peak-aged condition using a pin-on-disc wear testing machine at different loads. The composites were prepared by the reaction of a mixture of K2TiF6 and KBF4 salts with molten alloy. The results indicate that TiB2 particles markedly improve the wear performance of the Al–4Cu alloy. The wear resistance increases with increase in the amount of TiB2. The load bearing capacity of the alloy during wear increases in presence of TiB2 particles. Study of the wear surfaces and debris of both alloy and composites using the scanning electron microscope suggests that the improvement in wear resistance is mainly due to the formation of finer debris.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,