Article ID Journal Published Year Pages File Type
619745 Wear 2007 10 Pages PDF
Abstract

Seizure initiation in lean-lubricated contacts was experimentally studied using a transient test method of ball-on-disc type at two different sliding velocities, 2 and 3.8 m/s. Four different nodular cast iron surfaces were tested against a bearing ball of 100Cr6 steel: a fine-milled and roller-burnished surface, a ground and lapped surface, a ground and lapped laser-melted surface, and finally a ground surface. The results show that the ground surface, even though it is smoother than the fine-milled and roller-burnished surface, shows indications of seizure at a lower load. No graphite nodules from the nodular cast iron were visible in the surfaces on inspection with an optical light microscope. In contrast, the ground and lapped surface suffered no initial or total seizure in these tests. In this case, many graphite nodules were visible in the surface, and these nodules became detached in the contact zone, where they probably acted as a solid lubricant. Many graphite nodules were also visible in the ground and laser-melted surface, though in this case the graphite nodules did not become detached. This surface topography initiated seizure under a low normal load, and increased sliding velocity lowered the total seizure load significantly.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,