Article ID Journal Published Year Pages File Type
619893 Wear 2006 14 Pages PDF
Abstract

Friction and wear are major limiting factors for the development and commercial implementation of devices fabricated by surface micromachining techniques. These tribological properties are studied using a polycrystalline silicon nanotractor device, which provides abundant, quantitative information about friction and wear at an actual microelectromechanical system (MEMS) interface. This in situ approach to measuring tribological properties of MEMS, combined with high-resolution atomic force microscope (AFM) images of wear tracks, provides insight into the effects of different MEMS surface processing on wear. In particular, monolayer coatings have a significant positive effect, while surface texturing does not strongly affect performance.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,