Article ID Journal Published Year Pages File Type
620188 Wear 2006 7 Pages PDF
Abstract
In this paper, it is proposed to use a new type of solid particle impact test (slurry jet) to swiftly evaluate wear properties of thin, single layered or multilayered coatings. By the slurry jet, 1.2 μm alumina particles were impacted at high velocity perpendicular to thin PVD coatings of TiN deposited on high speed steel substrate materials under various substrate temperatures. Since the coatings have a much higher wear resistance than the substrate material, the wear rate increases significantly to the higher level of the HSS material when the coatings are penetrated. This is utilized in the quantification of the assessment of coating wear. A ranking of wear resistance and correlations to the coating surface hardness measured by nano-indentation tests, and coating morphology and structures are given and discussed. The TiN deposited under the highest substrate temperature proved to have the highest wear resistance although it had a relatively low hardness. The wear rate of the TiN coatings varies with the orientation of grains, that is, the {1 1 1} orientation that dominates for the high temperature deposition shows a higher wear resistance than the {1 0 0} orientation, which corresponds with the cleavage fracture behavior. Thus, it can be recommended as a screening test when evaluating coatings and coated materials.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , ,