Article ID Journal Published Year Pages File Type
62019 Journal of Catalysis 2010 11 Pages PDF
Abstract

Supported mononuclear iridium complexes with ethene ligands were prepared by the reaction of Ir(C2H4)2(acac) (acac is CH3COCHCOCH3) with highly dehydroxylated MgO. Characterization of the supported species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies showed that the resultant supported organometallic species were Ir(C2H4)2, formed by the dissociation of the acac ligand from Ir(C2H4)2(acac) and bonding of the Ir(C2H4)2 species to the MgO surface. Direct evidence of the site-isolation of these mononuclear complexes was obtained by aberration-corrected scanning transmission electron microscopy (STEM); the images demonstrate the presence of the iridium complexes in the absence of any clusters. When the iridium complexes were probed with CO, the resulting IR spectra demonstrated the formation of Ir(CO)2 complexes on the MgO surface. The breadth of the νCO bands demonstrates a substantial variation in the metal–support bonding, consistent with the heterogeneity of the MgO surface; the STEM images are not sufficient to characterize this heterogeneity. The supported iridium complexes catalyzed ethene hydrogenation at room temperature and atmospheric pressure in a flow reactor, and EXAFS spectra indicated that the mononuclear iridium species remained intact. STEM images of the used catalyst confirmed that almost all of the iridium complexes remained intact, but this method was sensitive enough to detect a small degree of aggregation of the iridium on the support.

Graphical abstractAberration-corrected STEM images and EXAFS and IR spectra demonstrate that site-isolated iridium complexes are the predominant species in an MgO-supported catalyst used for ethene hydrogenation; the scattering centers indicate individual Ir atoms and clusters of several Ir atoms.Figure optionsDownload full-size imageDownload high-quality image (38 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,