Article ID Journal Published Year Pages File Type
6203288 Vision Research 2014 8 Pages PDF
Abstract

•Antisaccades undershot target location independent of target eccentricity.•The magnitude of the undershooting bias is influenced by target frequency.•Perceptual averaging governs the visual information mediating antisaccades.

Perceptual judgments related to stimulus-sets are represented computationally different than individual items. In particular, the perceptual averaging hypothesis contends that the visual system represents target properties (e.g., eccentricity) via a statistical summary of the individual targets included within a stimulus-set. Here we sought to determine whether perceptual averaging governs the visual information mediating an oculomotor task requiring top-down control (i.e., antisaccade). To that end, participants completed antisaccades (i.e., saccade mirror-symmetrical to a target) - and complementary prosaccades (i.e., saccade to veridical target location) - to different target eccentricities (10.5°, 15.5° and 20.5°) located left and right of a common fixation. Importantly, trials were completed in blocks wherein eccentricities were presented with equal frequency (i.e., control condition) and when the 'proximal' (10.5°: i.e., proximal-weighting condition) and 'distal' (20.5°: i.e., distal-weighting condition) targets were respectively presented five times as often as the other eccentricities. If antisaccades are governed by a statistical summary then amplitudes should be biased in the direction of the most frequently presented target within a block. As expected, pro- and antisaccade across each target eccentricity were associated with an undershooting bias and prosaccades were refractory to the manipulation of target frequency. Most notably, antisaccades in the proximal-weighting condition had a larger undershooting bias than the control condition, whereas the converse was true for the distal-weighing condition; that is, antisaccades were biased in the direction of the most frequently presented target. Thus, we propose that perceptual averaging extends to motor tasks requiring top-down cognitive control.

Related Topics
Life Sciences Neuroscience Sensory Systems
Authors
, ,