Article ID Journal Published Year Pages File Type
6203776 Vision Research 2011 11 Pages PDF
Abstract

Temporal information in a scene is thought to be an important cue for visual grouping of local image features into a single object. The majority of studies on this topic have attempted to determine the conditions that facilitate segregation of a figure from a cluttered background. Here we examine the temporal characteristics of two aftereffects that appear to have roles in visual integration: the curvature aftereffect (CAE; Hancock & Peirce, 2008) and plaid-selective contrast adaptation (Peirce & Taylor, 2006). Both aftereffects used a “compound adaptation” paradigm measuring adaptation to a compound stimulus that cannot be explained by adaptation to its components presented in isolation. The temporal tuning characteristics of the two aftereffects differed in three distinct ways. First, plaid-selective adaptation was very sensitive to temporal phase asynchronies, while the CAE was not. Second, while both aftereffects showed integration of alternating components above 4 Hz, for plaids the overall magnitude of adaptation was less than to synchronous stimuli and was eliminated at the highest frequencies. Finally, plaid-selective adaptation demonstrated a low-pass dependency for temporal flicker frequency of synchronous gratings, whereas the CAE did not. Overall, these results suggest that at least two different mechanisms are involved in the binding/segregation of local signals into compound patterns: one with high temporal resolution that allows rapid parsing of plaid patterns into their components and one with a coarser temporal sensitivity that mediates the CAE.

► Plaid and curvature adaptation effects show different dependencies for temporal phase and frequency. ► Plaid adaptation is highly sensitive to the temporal phase of its constituent gratings. ► Our results suggest that at least two neural mechanisms underlie the combination of local features into compound patterns.

Related Topics
Life Sciences Neuroscience Sensory Systems
Authors
, , ,