Article ID Journal Published Year Pages File Type
6204806 Clinical Biomechanics 2013 7 Pages PDF
Abstract

BackgroundWith an increasing prevalence of osteoporosis, physicians have to optimize treatment of relevant vertebral compression fractures, which have significant impact on the quality of life in the elder population. Retrospective clinical studies suggest that kyphoplasty, despite being a procedure with promising potential, may be related to an increased fracture risk of the adjacent untreated vertebrae.MethodsA bio-realistic model of a lumbar spine is introduced to determine the morbidity of cemented augmentation. The model was verified and validated for the purpose of the study and subjected to a dynamic finite element analysis. Anisotropic bone properties and solid ligamentous tissue were considered along with α time varying loading scenario.FindingsThe yielded results merit high clinical interest. Bi-pedicular filling stimulated a symmetrically developing stress field, thus comparing favourably to uni-pedicular augmentation which resulted in a non-uniform loading of the spine segment. An enslavement of the load transfer was also found to both patient bone mineral density and reinforcement-nucleous pulpous superimposition.InterpretationThe investigation presented refined insight into the dynamic biomechanical response of a reinforced spine segment. The increase in the calculated occurring stresses was considered as non-critical in most cases, suggesting that prevalent fractures are a symptomatic condition of osteoporosis rather than a sequel of efficiently preformed kyphoplasty.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , , ,