Article ID Journal Published Year Pages File Type
6205005 Clinical Biomechanics 2012 5 Pages PDF
Abstract

BackgroundThe most common cause of acquired flatfoot deformity is tibialis posterior tendon dysfunction. The present study compared the change in medial longitudinal arch height during cyclic axial loading with and without activated tibialis posterior tendon force.MethodsFourteen normal, fresh frozen cadaveric legs were used. A total of 10,000 cyclic axial loadings of 500 N were applied to the longitudinal axis of the tibia. The 32-N tibialis posterior tendon forces were applied to the specimens of the active group (n = 7). Specimens of another group (non-active group, n = 7) were investigated without the tibialis posterior tendon force. The bony arch index was calculated from the displacement of the navicular height.FindingsThe mean initial bony arch indexes with maximal weightbearing were 0.239 (SD 0.009) in active group and 0.239 (SD 0.014) in non-active group. After 7000 cycles, the bony arch indexes with maximal weightbearing were significantly greater in the active group (mean 0.214, SD 0.013) than in the non-active group (mean 0.199, SD 0.013). The mean bony arch indexes with maximal weightbearing after 10,000 cycles were 0.212 (SD 0.011) in the active group and 0.196 (SD 0.015) in the non-active group.InterpretationThe passive supportive structures were inadequate, and the tibialis posterior muscle was essential to maintain the medial longitudinal arch of the foot in the dynamic weightbearing condition. The findings underscore that physical therapy and arch supportive equipments are important to prevent flatfoot deformity in the condition of weakness or dysfunction of the tibialis posterior muscle.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , , ,