Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6206039 | Gait & Posture | 2015 | 4 Pages |
â¢Vertical margin of the toe part of a shoe from the floor influences tripping risks.â¢Virtual marker function can simulate gait kinematics for shoe-designs.â¢Dorsiflexion is the key ankle joint motion to increase swing foot-ground clearance.
Falls are an important healthcare concern in the older population and tripping is the primary cause. Greater swing foot-ground clearance is functional for tripping prevention. Trips frequently occur due to the lowest part of the shoe contacting the walking surface. Shoe design effects on swing foot-ground clearance are, therefore, important considerations. When a shoe is placed on a flat surface, there usually is small vertical margin (VM) between the walking surface and the minimum toe point (MTP). The current study examined the effects of VM on swing foot-ground clearance at a critical gait cycle event, minimum foot clearance (MFC). 3D coordinates of the swing foot (i.e. MTP and heel) were obtained during the swing phase. MTP represented the swing foot-ground clearance and various MTPs were modelled based on a range of VMs. The sagittal orientation of the toe and heel relative to the walking surface was also considered to evaluate effects of VM and swing foot angle on foot-ground clearance. Greater VM increased the swing foot-ground clearance. At MFC, for example, 0.09 cm increase was estimated for every 0.1 cm VM. Foot angle throughout the swing phase was typically â30° and 70°. Increasing swing ankle dorsiflexion can maximise VM, which is effective for tripping prevention. Further research will be needed to determine the maximum thresholds of VM to be safely incorporated into a shoe.