Article ID Journal Published Year Pages File Type
6208295 Gait & Posture 2011 6 Pages PDF
Abstract

Transitional movements are a determinant of functional independence and have limited study in amputees. Microprocessor prosthetic knees' abilities to assist transfemoral amputees with sitting and standing have not been studied. Through cross-sectional study, 21 transfemoral amputees, divided into 3 groups of 7 by knee type (power knee, C-leg, Mauch SNS) and 7 non-amputee controls (n = 28) performed sit to stand and stand to sit while kinematic and kinetic data were recorded. Transfemoral amputees can stand (1.6-2.0 s) and sit (2.1-2.8 s) at rates comparable to controls (1.6 s). Controls' ground reaction force (GRF) and knee moment production was <7% asymmetric and superior to amputees' during both movements. For sit to stand, amputees' asymmetry for GRF ranged from 53 to 69% and 110 to 124% for knee moments. For stand to sit, amputees' asymmetry for GRF ranged from 32 to 60% and 84 to 114% for knee moments. Hip moment asymmetry for sit to stand was less for control (21%) and power knee (34%) groups than that produced by the Mauch SNS (59%) group. For stand to sit, hip moment production for the Mauch SNS (47%) and C-leg groups (71%) were more asymmetric than controls (19%). In the majority of cases transfemoral amputees do not load their prosthesis extensively for standing up or sitting down. Therefore, this transitional movement is currently a one-legged task, which increases stress on the sound limb. Generally, the prosthetic knees studied did not produce a significant knee moment in either task. Although most differences between knee groups were not statistically significant, differences may be clinically meaningful on an individual basis.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , , , ,