Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6208907 | The Journal of Arthroplasty | 2015 | 6 Pages |
Lack of ACL and non-anatomic articular surfaces in contemporary total knee implants result in kinematic abnormalities. We hypothesized that such abnormalities may be addressed with a biomimetic bi-cruciate retaining (BCR) design having anatomical articular surfaces. We used dynamic computer simulations to compare kinematics among the biomimetic BCR, a contemporary BCR and cruciate-retaining implant for activities of daily living. During simulated deep knee bend, chair-sit and walking, the biomimetic BCR implant showed activity dependent kinematics similar to healthy knees in vivo. Restoring native knee geometry together with ACL preservation provided these kinematic improvements over contemporary ACL-preserving and ACL-sacrificing implants. Further clinical studies are required to determine if such biomimetic implants can result in more normal feeling knees and improve quality of life for active patients.