Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6210022 | The Journal of Arthroplasty | 2013 | 5 Pages |
The aim of this study was to perform a biomechanical analysis of the cement-in-cement (c-in-c) technique for fixation of selected Vancouver Type B1 femoral periprosthetic fractures and to assess the degree of cement interposition at the fracture site. Six embalmed cadaveric femora were implanted with a cemented femoral stem. Vancouver Type B1 fractures were created by applying a combined axial and rotational load to failure. The femora were repaired using the c-in-c technique and reloaded to failure. The mean primary fracture torque was 117 Nm (SD 16.6, range 89-133). The mean revision fracture torque was 50 Nm (SD 16.6, range 29-74), which is above the torque previously observed for activities of daily living. Cement interposition at the fracture site was found to be minimal.