Article ID Journal Published Year Pages File Type
6210668 Journal of Electromyography and Kinesiology 2012 9 Pages PDF
Abstract

Measuring force production in muscles is important for many applications such as gait analysis, medical rehabilitation, and human-machine interaction. Substantial research has focused on finding signal processing and modeling techniques which give accurate estimates of muscle force from the surface-recorded electromyogram (EMG). The proposed methods often do not capture both the nonlinearities and dynamic components of the EMG-force relation. In this study, parallel cascade identification (PCI) is used as a dynamic estimation tool to map surface EMG recordings from upper-arm muscles to the induced force at the wrist. PCI mapping involves generating a parallel connection of a series of linear dynamic and nonlinear static blocks. The PCI model parameters were initialized to obtain the best force prediction. A comparison between PCI and a previously published Hill-based orthogonalization scheme, that captures physiological behaviour of the muscles, has shown 44% improvement in force prediction by PCI (averaged over all subjects in relative-mean-square sense). The improved performance is attributed to the structural capability of PCI to capture nonlinear dynamic effects in the generated force.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , ,