Article ID Journal Published Year Pages File Type
6212053 The Spine Journal 2015 6 Pages PDF
Abstract

Background contextThe transforaminal lumbar interbody fusion (TLIF) technique supplements posterior instrumented lumbar spine fusion and has been tested with different types of screw fixation for stabilization. Transforaminal lumbar interbody fusion is usually placed through a unilateral foraminal approach after unilateral facetectomy, although extraforaminal entry allows the facet to be spared.PurposeTo characterize the biomechanics of L4-L5 lumbar motion segments instrumented with bilateral transfacet pedicle screw (TFPS) fixation versus bilateral pedicle screw-rod (PSR) fixation in the setting of intact facets and native disc or after discectomy and extraforaminal placement of a TLIF technology graft.Study designHuman cadaveric lumbar spine segments were biomechanically tested in vitro to provide a nonpaired comparison of four configurations of posterior and interbody instrumentation.MethodsFourteen human cadaveric spine specimens (T12-S1) underwent standard pure moment flexibility tests with intact L4-L5 disc and facets. Seven were studied with intact discs, after TFPS fixation, and then with TLIF and TFPS fixation. The others were studied with intact discs, after PSR fixation, and then combined with extraforaminally placed TLIF. Loads were applied about anatomic axes to induce flexion-extension, lateral bending, and axial rotation. Three-dimensional specimen motion in response to applied loads during flexibility tests was determined. A nonpaired comparison of the four configurations of posterior and interbody instrumentation was made.ResultsTransfacet pedicle screw and PSR, with or without TLIF, significantly reduced range of motion during all directions of loading. Transfacet pedicle screw provided greater stability than PSR in all directions of motion except lateral bending. In flexion, TFPS was more stable than PSR (p=.042). A TLIF device provided less stability than the intact disc in constructs with TFPS and PSR.ConclusionsThese results suggest that fixation at L4-L5 with TFPS is a promising alternative to PSR, with or without TLIF. A TLIF device was less stable than the native disc with both methods of instrumentation presumably because of a fulcrum effect from a relatively small footplate. Additional interbody support may be considered for improved biomechanics with TLIF.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , , , , ,