Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
623132 | Desalination | 2015 | 13 Pages |
Abstract
Within some data limitations, the paper provides a first assessment of areas in Australia with potential for implementing desalination technologies to supply agricultural water. At the national scale, these areas were identified based on a set of selected criteria: distance from land currently used for irrigated agriculture and feedlots; distance from town sites; exclusion of areas of environmental protection; exclusion of areas with surface elevation greater than 600Â m AHD; and exclusion of regions with limited groundwater resources. Industries involved in the production of high-value crops are most likely to benefit from desalinated water as they use more-efficient irrigation practices and have the highest gross value of irrigated agricultural production. Groundwater was identified as the most likely feedwater source for cost-effective desalination, which is also the case worldwide. Brine disposal is a major factor in overall cost effectiveness of desalination. When feedwater salinity is relatively low, mixing permeate with feedwater leads to an increase in water production and a reduction in water cost. It was estimated that Australian farmers are unlikely to pay more than AU$1.2/kL for agricultural water. Generally for agriculture, desalinated water is still more expensive than water from other sources; however, there are likely to be circumstances when the costs could be comparable.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Filtration and Separation
Authors
Olga Barron, Riasat Ali, Geoff Hodgson, David Smith, Ejaz Qureshi, Don McFarlane, Elena Campos, Domingo Zarzo,