Article ID Journal Published Year Pages File Type
625282 Desalination 2011 6 Pages PDF
Abstract

The activated carbon (AC) electrode was prepared and carbonized at 850 °C for electrosorption desalination. As a result, the electrical double-layer capacitance of AC electrode was improved by 2.16 times by carbonization. In order to improve the desalination performance of AC electrode, it was modified by loading titania with sol-gel method. The electrodes were analyzed using scanning electron microscope (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and electrochemical workstation. The results revealed that there was a certain amount of titania on the surface of modified AC electrode, which was accumulated on the surface of electrode forming some flocculent substance and its crystalline phase was rutile. After modification, the forming rate of electrical double-layer and electrosorption capacity of AC electrode were obviously improved and its desalination ratio was increased by 62.7%, whereas physical adsorption was decreased. In addition, compared with AC electrode, activated carbon fiber (ACF) electrode, and carbon nanotube (CNT) electrode, the AC loaded titania (AC-TiO2) electrode exhibited relatively higher desalination and desorption ratios as well as a reasonable cost. Therefore, the AC-TiO2 electrode would be suitable for the application of electrosorption desalination in the practical industry.

Research Highlights► Activated carbon loaded with titania (AC-TiO2) electrode was prepared. ► Electrosorption desalination of AC electrode was obviously improved by loading tatania. ► AC-TiO2 electrode exhibited relatively higher desalination and desorption ratios as well as a reasonable cost. ► AC-TiO2 electrode would be suitable for the application in the practical industry.

Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , ,