Article ID Journal Published Year Pages File Type
6253562 Journal of Surgical Research 2015 7 Pages PDF
Abstract

BackgroundSimvastatin reduces ventilator-induced lung injury and is regularly used in clinical practice. This study aimed to test the hypotheses that long-term use of simvastatin could affect the incidence and severity of ventilator-induced lung injury after mechanical ventilation, and the process may involve heme oxygenase-1 (HO-1).Materials and methodsForty healthy adult Sprague-Dawley rats were randomly divided into four groups, namely control, ventilation, simvastatin, and simvastatin + ventilation groups. Saline (control and ventilation groups) or 10 mg kg−1 d−1 simvastatin (simvastatin and simvastatin + ventilation groups) was administered by gavage to the animals for 4 wk. Mechanical ventilation (tidal volume 50 mL/kg) was then applied for 4 h to the ventilation and simvastatin + ventilation groups. Lung tissues were harvested for hematoxylin-eosin staining and pathologic examination, and HO-1 contents were measured by immunoblotting and polymerase chain reaction.ResultsA severe pathologic damage was observed in rats that underwent mechanical ventilation. Interestingly, protein concentration, wet/dry weight ratio, myeloperoxidase activity, and malondialdehyde level were increased, and superoxide dismutase activity decreased, in lung tissues after mechanical ventilation. The pathologic damage was substantially alleviated in rats treated with simvastatin before mechanical ventilation: reduced protein concentration, wet/dry weight ratio, myeloperoxidase activity, and malondialdehyde level, and increased superoxide dismutase activity in lung tissues, compared with the ventilation group. Both mechanical ventilation and simvastatin administration induced HO-1 messenger RNA and protein expression in lung tissues.ConclusionsLong-term administration of simvastatin significantly reduces the inflammatory response and pulmonary injury induced by mechanical ventilation, potentially by upregulating HO-1 in lung tissues.

Related Topics
Health Sciences Medicine and Dentistry Surgery
Authors
, , ,