Article ID Journal Published Year Pages File Type
6257348 Behavioural Brain Research 2015 11 Pages PDF
Abstract

•α-Synuclein fibrils and/or oligomers were given intranasally for 14 days in mice.•Combined oligomers + fibrils caused rigidity and locomotor impairment.•α-Syn mixture motor symptoms coincided with elevated striatal then later nigral NA.•Fibrils augmented nigral 5-HT and 5-HIAA but an oligomer 5-HT effect was delayed.•Neurodegenerative, vesicular and monoamine transporter mechanisms are discussed.

Alpha-synuclein (α-syn) toxic aggregates delivered by the nasal vector have been shown to modify the neurochemistry of dopamine (DA) which is associated with parkinsonian-like motor symptoms. The aim was therefore to study the intranasal effects of α-syn oligomers, fibrils or their combination on the motor behavior of aged mice in relation to possible noradrenergic and serotonergic correlates. In vitro generated α-syn oligomers and fibrils were verified using atomic force microscopy and the thioflavin T binding assay. Levels of noradrenaline (NA), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were detected using HPLC with electrochemical detection in the substantia nigra (SN) and striatum. The oligomers or fibrils administered alone or in a 50:50 combination (total dose of 0.48 mg/kg) were given intranasally for 14 days and “open-field” behaviour was tested on days 0, 15 and 28 of the protocol, at which time brain structures were sampled. Behavioral deficits at the end of the 14-day dosing regime and on day 28 (i.e. 14 days after treatment completion) induced hypokinesia and immobility whilst the aggregate combination additionally produced rigidity. The α-Syn oligomer/fibril mixture also instigated PD-like motor symptoms which correlated heterochronically with elevated NA levels in the striatum but then later in the SN while intranasal fibrils alone augmented 5-HT and 5-HIAA nigral concentrations throughout the protocol. In contrast, α-syn oligomers displayed a delayed serotonin upsurge in the SN. Neurodegenerative and/or actions on neurotransmitter transporters (such as NET, SERT and VMAT2) are discussed as being implicated in these α-syn amyloid induced neurochemical and motoric disturbances.

Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , , , , ,