Article ID Journal Published Year Pages File Type
6259189 Behavioural Brain Research 2013 9 Pages PDF
Abstract

Neurosteroids (NS) are well known to exert modulatory effects on ionotropic receptors. Recent findings indicate that NS could also act as important factors during development. In this sense, neonatal modifications of Allopregnanolone (Allop) levels during critical periods have been demonstrate to alter the morphology of the hippocampus but also other brain structures. The aim of the present work is to screen whether the alterations of Allop levels modify adult CA1 hippocampal response to NS administration. For this purpose, pups were injected with Allop (20 mg/kg s.c.), Finasteride (5α-reductase inhibitor that impedes Allop synthesis) (50 mg/kg s.c.) or Vehicle from postnatal day 5 (P5) to postnatal day 9 (P9). NS levels were tested at P5. To test the behavioural hippocampal response to NS in adulthood, animals were implanted with a bilateral cannula into the CA1 hippocampus at 80 days old and injected with Allop (0.2 μg/0.5 μl), Pregnenolone sulphate (5 ng/0.5 μl) or Vehicle in each hippocampus. After injections animals were tested in the Boisser test to assess exploratory behaviour, the elevated plus maze to assess anxiety and the passive avoidance to test aversive learning. Results indicate that alteration of neonatal Allop or pregnenolone levels (by Allop and Finasteride administration, respectively) suppressed intrahippocampal Allop anxiolytic effect in the EPM. Moreover our results also indicate that manipulation of neonatal Allop levels (Allop and Finast administration) alters exploratory and anxiety-like behaviour and impairs aversive learning in the adulthood. These data point out the role of Allop in the maturation of hippocampal function and behaviour.

► Neonatal Allop is important for the adult intrahippocampal axiolytic profile of NS. ► Neonatal alteration of Allop levels alters adult exploratory and anxiety behaviour. ► Neonatal alteration of Allop levels affects adult avoidance learning performance.

Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , ,