Article ID Journal Published Year Pages File Type
6259320 Behavioural Brain Research 2013 7 Pages PDF
Abstract

Olfaction is often impaired in Alzheimer's disease (AD) and is also dysfunctional in mouse models of the disease. We recently demonstrated that short-term passive anti-murine-Aβ immunization can rescue olfactory behavior in the Tg2576 mouse model overexpressing a human mutation of the amyloid precursor protein (APP) after β-amyloid deposition. Here we tested the ability to preserve normal olfactory behaviors by means of long-term passive anti-murine-Aβ immunization. Seven-month-old Tg2576 and non-transgenic littermate (NTg) mice were IP-injected biweekly with the m3.2 murine-Aβ-specific antibody until 16 mo of age when mice were tested in the odor habituation test. While Tg2576 mice treated with a control antibody showed elevations in odor investigation times and impaired odor habituation compared to NTg, olfactory behavior was preserved to NTg levels in m3.2-immunized Tg2576 mice. Immunized Tg2576 mice had significantly less β-amyloid immunolabeling in the olfactory bulb and entorhinal cortex, yet showed elevations in Thioflavin-S labeled plaques in the piriform cortex. No detectable changes in APP metabolite levels other than Aβ were found following m3.2 immunization. These results demonstrate efficacy of chronic, long-term anti-murine-Aβ m3.2 immunization in preserving normal odor-guided behaviors in a human APP Tg model. Further, these results provide mechanistic insights into olfactory dysfunction as a biomarker for AD by yielding evidence that focal reductions of Aβ may be sufficient to preserve olfaction.

► Olfaction is dysfunctional in mouse models of the Alzheimer's disease (AD). ► Chronic anti-murine amyloid-β immunization preserved odor habituation behavior. ► Less amyloid-β deposits were found in the olfactory bulb and entorhinal cortex of immunized mice. ► No detectable changes in APP metabolite levels other than amyloid-β were found.

Related Topics
Life Sciences Neuroscience Behavioral Neuroscience