Article ID Journal Published Year Pages File Type
6262621 Brain Research 2016 12 Pages PDF
Abstract

•The working memory capacity was 4 calculated from the behavioral results.•Theta activitywas load-dependent during the working memory delay period.•Connectivities in frontal and parietal regions were engaged in working memory.•The capacity-constrained responses were demonstrated on connectivity strengths.

Evidence from behavioral studies has suggested a capacity existed in working memory. As the concept of functional connectivity has been introduced into neuroscience research in the recent years, the aim of this study is to investigate the functional connectivity in the brain when working memory load reaches the capacity. 32-channel electroencephalographs (EEGs) were recorded for 16 healthy subjects, while they performed a visual working memory task with load 1-6. Individual working memory capacity was calculated according to behavioral results. Short-time Fourier transform was used to determine the principal frequency band (theta band) related to working memory. The functional connectivity among EEGs was measured by the directed transform function (DTF) via spectral Granger causal analysis. The capacity was 4 calculated from the behavioral results. The power was focused in the frontal midline region. The strongest connectivity strengths of EEG theta components from load 1 to 6 distributed in the frontal midline region. The curve of DTF values vs load numbers showed that DTF increased from load 1 to 4, peaked at load 4, then decreased after load 4. This study finds that the functional connectivity between EEGs, described quantitatively by DTF, became less strong when working memory load exceeded the capacity.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,