Article ID Journal Published Year Pages File Type
6263405 Brain Research 2014 10 Pages PDF
Abstract

•In cultured neurons, lasting partial hypoxia affects functional connectivity.•Lasting partial hypoxia affects synaptically driven network responses.•Action potentials and direct network responses are unaffected.•This indicates impaired synaptic connectivity, with intact individual neurons.•Cognitive impairment in patients with chronic hypoxia may be caused by synaptic failure.

Eighty percent of patients with chronic mild cerebral ischemia/hypoxia resulting from chronic heart failure or pulmonary disease have cognitive impairment. Overt structural neuronal damage is lacking and the precise cause of neuronal damage is unclear. As almost half of the cerebral energy consumption is used for synaptic transmission, and synaptic failure is the first abrupt consequence of acute complete anoxia, synaptic dysfunction is a candidate mechanism for the cognitive deterioration in chronic mild ischemia/hypoxia. Because measurement of synaptic functioning in patients is problematic, we use cultured networks of cortical neurons from new born rats, grown over a multi-electrode array, as a model system. These were exposed to partial hypoxia (partial oxygen pressure of 150 Torr lowered to 40-50 Torr) during 3 (n=14) or 6 (n=8) hours. Synaptic functioning was assessed before, during, and after hypoxia by assessment of spontaneous network activity, functional connectivity, and synaptically driven network responses to electrical stimulation. Action potential heights and shapes and non-synaptic stimulus responses were used as measures of individual neuronal integrity. During hypoxia of 3 and 6 h, there was a statistically significant decrease of spontaneous network activity, functional connectivity, and synaptically driven network responses, whereas direct responses and action potentials remained unchanged. These changes were largely reversible. Our results indicate that in cultured neuronal networks, partial hypoxia during 3 or 6 h causes isolated disturbances of synaptic connectivity.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,