Article ID Journal Published Year Pages File Type
6263410 Brain Research 2014 9 Pages PDF
Abstract

•Coupling strengths of the electrically coupled neurons regulate the synchrony level of SCN neurons.•Gap junctions play an essential role in modulating synchronous activity in the SCN during early development of mammalian brain.•VIP robustly modulates gap-junction mediated synchronicity among SCN neurons.

Electrical synapses (gap junctions) exist in many types of neurons in the mammalian brain, especially during early development period; one of the most important roles of electrical synapses is to mediate the synchrony of the neuronal networks and to coordinate the neural circuits function precisely. Previous reports show that electrical coupling is involved in modulating synchronous activity among coupled neurons, but related dynamics and mechanisms are still poorly understood. Here, in order to investigate the correlation between gap junctions and synchrony we focus on the electrically coupled neurons in suprachiasmatic nucleus (SCN) by using calcium imaging with two-photon microscopy and electrophysiology. We observed that coupled neurons in SCN present a dynamic regulation on synchrony based on their coupling strengths and are modulated by vasoactive intestinal peptide (VIP) - a neuropeptide whose receptors are expressed throughout the SCN. Modification of coupling efficiency of electrical synapses changes the synchrony level of the neuronal networks in the SCN. Our results provide new insights into the causal relationship between gap junctions and synchrony in the SCN. We further demonstrate the importance of VIP in coordinating the gap junctions-mediated signal transmission and implicate that a homeostasis environment is important for SCN to modulate the rhythmic circadian activities.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , ,