Article ID Journal Published Year Pages File Type
6263981 Brain Research 2013 13 Pages PDF
Abstract

Apigenin, belonging to a less toxic and non-mutagenic flavone subclass of flavonoids, has been reported to possess numerous biological activities beneficial to health. Although evidence has shown apigenin might exert its protective effects by reducing the toxicity induced by amyloid-β peptides (Aβ), the precise mechanism is unclear. In the present study, we investigated the in vitro neuroprotective activity of apigenin interrelated with amyloid toxicity and mental homeostasis in an Alzheimer's disease (AD) cell model and explored its potential signal transduction. Our results showed that apigenin protected neurons against Aβ-mediated toxicity induced by copper, which was characterized by increasing neuronal viability and relieving mitochondrial membrane dissipation and neuronal nuclear condensation. Further, we demonstrated that apigenin did not provide sufficient effect on decreasing β-amyloid precursor protein (AβPP) expression and lowering Aβ1-42 secretion, but conserved redox balance by increasing intracellular glutathione levels and enhancing cellular superoxide dismutase and glutathione peroxidase activities, reduced intracellular reactive oxygen species (ROS) generation, blocked ROS-induced p38 mitogen-activated protein kinases (p38 MAPK)- MAPKAP kinase-2 (MK2)-heat shock protein 27 (Hsp27) and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)-c-Jun signaling pathways, preserved mitochondrial function, and then regulated apoptotic pathways. In conclusion, apigenin could exert neuroprotection against Aβ-induced toxicity in the presence of copper mainly through the mechanisms that regulate redox imbalance, preserve mitochondrial function, inhibit MAPK pathways, and depress neuronal apoptosis.

► We explore the mechanism of neuroprotective effect of apigenin in an AD cell model. ► Apigenin inactivates the ROS-induced p38 MAPK and SAPK/JNK signaling pathways. ► Apigenin preserves mitochondrial function in the AD cell model. ► Apigenin restores the caspase family-related apoptotic signal pathway in AD cells.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,