Article ID Journal Published Year Pages File Type
6264037 Brain Research 2013 7 Pages PDF
Abstract

Most of the reports about an altered baroreflex attribute this condition to the diabetic efferent neuropathy of the aortic depressor nerve (ADN) (afferent arm of the baroreflex less explored). We evaluated the ADN ultrastructural alterations caused by long term experimental diabetes and the effects of insulin treatment. Wistar rats (N=14) received a single intravenous injection of streptozotocin (40 mg/kg) 12 weeks before the experiment. Control animals (N=9) received vehicle (citrate buffer). Insulin treated animals (N=8) received a single subcutaneous injection of insulin daily. Under pentobarbital anesthesia the ADNs were isolated and had their spontaneous activity recorded. Afterwards, proximal and distal segments of the nerves were prepared for transmission electron microscopy study. Morphometry of the unmyelinated fibers was carried out with the aid of computer software. ADN of the diabetic animals showed axonal atrophy for myelinated fibers, with more pronounced alterations of the myelin sheath, such as myelin infolding and out folding, presence of myelin balls and very thin myelin sheath in relation to the axonal size, particularly for the small myelinated fibers becoming evident. No differences were observed in myelinated fiber number and their density, as well as on the fascicular area. Unmyelinated fiber number was significantly larger in the diabetic group while fiber diameter was significantly smaller compared to control. This result suggests axonal atrophy or, if associated to the larger number of fibers present in this group, could indicate fiber sprouting. These alterations were more evident in the distal segments of the nerves and were moderated by insulin treatment.

► Unmyelinated fiber number is larger in diabetic rats compared to controls. ► Unmyelinated fiber size is smaller in diabetic rats compared to controls. ► Insulin treatment moderated unmyelinated fibers alterations. ► Myelinated fiber number is not different in diabetic rats compared to controls.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,