Article ID Journal Published Year Pages File Type
6265179 Brain Research 2011 11 Pages PDF
Abstract

A method for long-term, repeated, semi-quantitative measurements of cerebral microflow at the same region of interest (ROI) with high spatial resolution was developed and applied to mice subjected to focal arterial occlusion. A closed cranial window was chronically implanted over the left parieto-occipital cortex. The anesthetized mouse was placed several times, e.g., weekly, under a dynamic confocal microscope, and Rhodamine B-isothiocyanate-dextran was each time intravenously injected as a bolus, while microflow images were video recorded. Left and right tail veins were sequentially catheterized in a mouse three times at maximum over a 1.5 months' observation period. Smearing of the input function resulting from the use of intravenous injection was shown to be sufficiently small. The distal middle cerebral artery (MCA) was thermocoagulated through the cranial window in six mice, and five sham-operated mice were studied in parallel. Dye injection and video recording were conducted four times in this series, i.e., before and at 10 min, 7 and 30 days after sham operation or MCA occlusion. Pixelar microflow values (1/MTT) in a matrix of approximately 50 × 50 pixels were displayed on a two-dimensional (2-D) map, and the frequency distribution of the flow values was also calculated. No significant changes in microflow values over time were detected in sham-operated mice, while the time course of flow changes in the ischemic penumbral area in operated mice was similar to those reported in the literature. This method provides a powerful tool to investigate long-term changes in mouse cortical microflow under physiological and pathological conditions.

Research Highlights► Long-term, repeated measurements of cerebral microflow were achieved until 1 month. ► The measurements were semi-quantitative and with high spatial resolution. ► The method was applied to mice subjected to focal arterial occlusion. ► Pixelar microflow values (1/MTT) were displayed on a two-dimensional (2-D) map. ► The frequency distribution of the flow values was calculated.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , , , ,