Article ID Journal Published Year Pages File Type
6265901 Brain Research 2007 10 Pages PDF
Abstract

While the presence of immunoreactive insulin in the central nervous system of many vertebrate species is well known, the origin of brain insulin is still debated. In this study, we applied RT-PCR, quantitative RT-PCR (qRT-PCR), and Northern hybridization to examine expression of the insulin gene in different tissues of an adult teleost fish, the Nile Tilapia (Oreochromis niloticus). We found that the insulin gene is transcribed at a high level in Brockmann bodies (pancreatic islet organs) and at a low level in the brain and pituitary gland. In the brain, insulin transcripts were detected in all areas by qRT-PCR and in situ hybridization. The highest level of insulin mRNA was found in the hypothalamus. The level of insulin transcription in the pituitary gland was 6-fold higher than that in the brain and 4.6-fold higher than that in the hypothalamus. Furthermore, insulin mRNA and immunoreactive insulin-like protein was detected in the pituitary gland using in situ hybridization, immunohistochemistry, and Western blot analysis. Our results indicate that in adult tilapia insulin expression is not restricted to the endocrine pancreatic cells, but also occurs in endocrine cells of the pituitary gland and in the neuronal cells of the brain, suggesting that the brain/pituitary gland might represent extrapancreatic origin of insulin production.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,