Article ID Journal Published Year Pages File Type
6268478 Journal of Neuroscience Methods 2014 10 Pages PDF
Abstract
Event related potentials (ERPs) are very feeble alterations in the ongoing electroencephalogram (EEG) and their detection is a challenging problem. Based on the unique time-based parameters derived from wavelet coefficients and the asymmetry property of wavelets a novel algorithm to separate ERP components in single-trial EEG data is described. Though illustrated as a specific application to N170 ERP detection, the algorithm is a generalized approach that can be easily adapted to isolate different kinds of ERP components. The algorithm detected the N170 ERP component with a high level of accuracy. We demonstrate that the asymmetry method is more accurate than the matching wavelet algorithm and t-CWT method by 48.67 and 8.03 percent, respectively. This paper provides an off-line demonstration of the algorithm and considers issues related to the extension of the algorithm to real-time applications.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,