Article ID Journal Published Year Pages File Type
6272839 Neuroscience 2015 12 Pages PDF
Abstract

•Roles of HO-1 and GSK-3β have been well implicated in the pathophysiology of neurodegenerative disorders.•Pharmacological activation of HO-1 and inhibition of GSK-3β have been reported to provide neuroprotection.•Nrf2 is considered as a common link between HO-1 and GSK-3β.•The inhibition of GSK-3β might increase the expression of HO-1.•A combination of hemin and lithium chloride provides beneficial effect against 3-NP-induced neurotoxicity.

The present study has been designed to explore the possible interaction between hemeoxygenase-1 (HO-1) and glycogen synthase kinase-3β (GSK-3β) pathway in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats. 3-NP produces neurotoxicity by inhibition of the mitochondrial complex II (enzyme succinate dehydrogenase) and by sensitizing the N-methyl-d-aspartate receptor. Recent studies have reported the therapeutic potential of HO-1/GSK-3β modulators in different neurodegenerative disorders. However, their exact role is yet to be explored. The present study is an attempt to investigate the effect of pharmacological modulation of HO-1/GSK-3β pathway against 3-NP-induced behavioral, biochemical and molecular alterations in rat. Behavioral observation, oxidative stress, pro-inflammatory [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], HO-1 and GSK-3β activity were evaluated post 3-NP treatment. Findings of the present study demonstrate a significant alteration in the locomotor activity, motor coordination, oxidative burden (increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidants), pro-inflammatory mediators [TNF-α, IL-1β], HO-1 and GSK-3β activity in 3-NP-treated animals. Further, administration of hemin (10- and 30-mg/kg; i.p.) and lithium chloride (LiCl) (25- and 50-mg/kg; i.p.) prevented the alteration in body weight, motor impairments, oxidative stress and cellular markers. In addition, combined administration of hemin (10-mg/kg) and LiCl (25-mg/kg) showed synergistic effect on 3-NP-treated rats. Pretreatment with Tin (IV) protoporphyrin (40 μM/kg), HO-1 inhibitor reversed the beneficial effect of LiCl and hemin. Outcomes of the present study suggest that HO-1 and GSK-3β enzymes are involved in the pathophysiology of HD. The modulators of both the pathways might be used as adjuvants or prophylactic therapy for the treatment of HD-like symptoms.

Graphical abstractDownload high-res image (70KB)Download full-size image

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,