Article ID Journal Published Year Pages File Type
6273665 Neuroscience 2014 12 Pages PDF
Abstract

•Administration of the hybrid LTBABC ameliorates EAE and demyelination in the CNS.•Frequency of macrophages in the CNS was decreased in rats treated with LTBABC.•Treatment with the hybrid reduced INF-γ and IL-17-producing CD4+ cells in the CNS.•Lower INF-γ and IL-17 and higher IL-10 levels were found in the CNS of treated rats.

Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are crucially dependent on the invasion of activated autoreactive lymphocytes and blood macrophages into the central nervous system (CNS). Proinflammatory mononuclear cells and activated local microglia mediate inflammation, demyelination and axonal damage at the target organ. Previously, we observed that the administration of a hybrid between the synapsin ABC domains and the B subunit of Escherichia coli heat labile-enterotoxin (LTBABC) to rats with EAE ameliorated disease by modulating the peripheral Th1 response to myelin basic protein (MBP). In the present study, we investigated the effect of LTBABC administration on proinflammatory cell frequency in the CNS of rats with EAE. Treatment with the hybrid in the inductive phase of EAE attenuated disease severity and diminished histological inflammatory infiltrates and demyelination in the spinal cord of rats with acute EAE. Lower frequencies of infiltrating and local macrophages as well as CD4+ T cells that produce the proinflammatory cytokines interferon-gamma (IFN-γ) and interleukin (IL)-17 were found at the target organ. Concomitantly, low levels of INF-γ and IL-17 and increased levels of IL-10 were measured in cultures of CNS infiltrating cells and spinal cord tissue. An increased frequency of CD4+CD25+Foxp3 cells was observed at the disease peak and at the beginning of the recovery stage. These results provide further evidence for the immunomodulatory properties of the fusion protein LTBABC in autoimmune demyelinating disease affecting the central nervous system.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,