Article ID Journal Published Year Pages File Type
6274472 Neuroscience 2013 10 Pages PDF
Abstract
The zebra finch song system provides an excellent model to study the mechanisms underlying the development of sex difference in brain structure and function. Only male zebra finches sing and the brain nuclei controlling song learning and production are considerably larger than in females. Sexual differentiation may in part be regulated by estrogen, but other molecules including neurotrophic factors likely also affect masculinization. Brain derived neurotrophic factor (BDNF) plays a crucial role in numerous aspects of vertebrate brain development and function, including neurogenesis, cell survival, growth of axonal projections, synaptogenesis and processes linked to learning and memory. The current study investigated the expression of BDNF protein in juvenile males and females at four ages, as well as in adults, to begin to evaluate the potential roles of endogenous BDNF in particular stages of structural and functional development of the song system. In both HVC and the robust nucleus of the arcopallium (RA), males had more BDNF+ cells than females. The number of immunopositive cells increased in males and decreased in females as they matured, in a pattern generally consistent with a role for BDNF in sensorimotor integration of song learning. In addition, in HVC (but not RA) the ratio of mature BDNF compared to its precursor proBDNF was greater in adult males than those at post-hatching day 25, indicating a region-specific shift in the relative availability of the two forms. Collectively, the data suggest that changes in BDNF protein expression across development may be associated with song system maturation, particularly during the sensorimotor integration of masculine vocalizations.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, ,