Article ID Journal Published Year Pages File Type
6275336 Neuroscience 2012 10 Pages PDF
Abstract

Clinical studies and animal models have shown that pharmacoresistant epilepsy is partly due to the overexpression of ATP-binding cassette transporters at the brain. The purposes of the study were to investigate the function and expression of multidrug resistance-associated protein 2 (Mrp2) in the brain of pentylenetetrazole (PTZ)-kindled rats, and the effect of the altered Mrp2 function and expression on phenytoin (PHT) distribution in the brain. Kindled rats were developed by sub-convulsive dose of PTZ (33 mg/kg, every day, intraperitoneal (i.p.)) for 28 days. Mrp2 expression and function were measured by western blot and bromosulfophthalein (BSP) distribution in the brain. PHT concentrations in the brain of PTZ-kindled rats were measured alone or with co-administration of probenecid (50 mg/kg). Further experiment was designed to investigate whether PHT treatment prevented the up-regulated brain Mrp2 expression and function induced by PTZ-kindling. The results showed that PTZ-kindling resulted in an increase of Mrp2 level in the hippocampus and cortex of rats, accompanied by significant decreases in the brain-to-plasma concentration ratio of BSP. PTZ-kindling also decreased PHT levels in the hippocampus and cortex without altering PHT concentrations in plasma, resulting in a lower brain-to-plasma concentration ratio of PHT. Co-administration of probenecid increased the brain-to-plasma ratio of BSP and PHT in the brain of both normal and PTZ-kindled rats. A 14-day PHT treatment prevented the up-regulation of Mrp2 expression and function induced by PTZ-kindling, accompanied by increases of PHT concentrations in the brain and good anticonvulsive effects. The present study demonstrated that chronic PTZ-kindling increased Mrp2 expression and function in the rat brain, and the up-regulation partly came from epileptic seizure.

► PTZ-kindled rats showed up-regulation of Mrp2 expression and function in the brain. ► Mrp2 function change affected PHT distribution in the brain of PTZ-kindled rats. ► PHT treatment prevented the up-regulation of Mrp2 expression and function induced by PTZ-kindling.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,