Article ID Journal Published Year Pages File Type
6276577 Neuroscience 2011 9 Pages PDF
Abstract

Hypoxic respiratory and cardiovascular responses in mammals are mediated by peripheral chemoreceptor afferents which are relayed centrally via the solitary tract nucleus (NTS) in dorsomedial medulla to other cardiorespiratory-related brainstem regions such as ventrolateral medulla (VLM). Here, we test the hypothesis that peripheral chemoafferents could also be relayed directly to the Kölliker-Fuse/parabrachial complex in dorsolateral pons, an area traditionally thought to subserve pneumotaxic and cardiovascular regulation. Experiments were performed on adult Sprague-Dawley rats. Brainstem neurons with axons projecting to the dorsolateral pons were retrogradely labeled by microinjection with choleras toxin subunit B (CTB). Neurons involved in peripheral chemoreflex were identified by hypoxia-induced c-Fos expression. We found that double-labeled neurons (i.e. immunopositive to both CTB and c-Fos) were localized mostly in the commissural and medial subnuclei of NTS and to a lesser extent in the ventrolateral NTS subnucleus, VLM and ventrolateral pontine A5 region. Extracellular recordings from the commissural and medial NTS subnuclei revealed that some hypoxia-excited NTS neurons could be antidromically activated by electrical stimulations at the dorsolateral pons. These findings demonstrate that hypoxia-activated afferent inputs are relayed to the Kölliker-Fuse/parabrachial complex directly via the commissural and medial NTS and indirectly via the ventrolateral NTS subnucleus, VLM and A5 region. These pontine-projecting peripheral chemoafferent inputs may play an important role in the modulation of cardiorespiratory regulation by dorsolateral pons.

Research Highlights▶Hypoxia evokes c-Fos expression in NTS and ventrolateral medullary neurons. ▶Injecting CTB at dorsolateral pons labels neurons in NTS and ventrolateral medulla. ▶Some neurons in NTS and ventrolateral medulla are double-labeled for c-Fos and CTB. ▶Antidromic stimulation at dorsolateral pons activates hypoxia-excited NTS neurons. ▶NTS neurons forward peripheral chemoreceptor afferents to dorsolateral pons.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,